请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

金沙集团1862cc成色 >> 学术报告 >> 正文

 Geometry of scalar curvature, isoperimetric surface and quasi-local mass

发布日期:2019-05-10    点击:

报告题目:Geometry of scalar curvature, isoperimetric surface and quasi-local mass

报告人:史宇光教授(北京大学  

报告时间:2019522下午4:00—5:00

报告地点:主321

报告摘要:Quasi-local masses are basic notions in General Relativity. Geometrically, a quasi-local mass can be regarded as a geometric quantity of a boundary of a 3-dimensional compact Riemannian manifold. Usually, it is in terms of area and mean curvature of the boundary.  It is interesting to see that some of quasi-local masses, like Brown-York mass, Hawking mass and isoperimetric mass have deep relation with geometry of scalar curvature and classical isoperimetric inequality in asymptotically flat (hyperbolic) manifolds.  In this talk, I will discuss these relations and finally give some applications in the fill-in problem of Bartnik data and the uniqueness of isoperimetric surfaces in asymptotically Ads-Schwarzschilds manifolds.

报告人简介:史宇光现为北京大学数学科学学院副院长、教授,博士生导师。2007年获国家杰出青年基金项目资助2010年获第十一届中国青年科技奖2010年获由国际理论物理中心,Abel基金会,国际数学家联盟颁发的Ramanujan奖;2010-2013主持国家基金委重大项目2013年获教育部长江教授2016年享受政府特殊津贴2016年入选国家万人计划他的研究工作包括与数量曲率有关的几何分析问题,以及共形紧流形上的几何分析问题的研究,在J. Diff. Geom.Trans. AMS等国际著名数学期刊上已经发表34篇论文。

邀请人:韩德仁

快速链接

© 2021  版权所有 :金沙集团1862cc成色(中国)股份有限公司
地址:北京市昌平区高教园南三街9号   电话:61716719